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The molecular theory of the Brownian motion of heavy particles in a homogeneous 
solvent of light particles is extended to cover the case of interactions between the 
Brownian particles. This will have physical effects in the concentration dependence 
of the Brownian particle self-diffusion coefficient. A density expansion for the Brownian 
particle friction coefficient is derived, and an approximation permitting the first density 
correction to be calculated is suggested. 
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1. I N T R O D U C T I O N  

The mot ion  of  small particles suspended in a fluid, the Brownian motion,  
has been a subject o f  interest in physics since 1905. 2 Since the pioneering 
papers o f  Einstein (21 and Smoluchowski (a) the theory of  this mot ion  has been 
treated as a stochastic theory, and, until recently, no satisfactory molecular 
derivation of  the basic equation of  the theory, the Fokker -P lanck  equation, had been 
given. Within the past  few years, however, the molecular theory o f  the Brownian 
mot ion  of  a single heavy particle in a medium of  light particles has been placed on a 
firm footing by the work of  Lebowitz, R6sibois, and associates. ~-7~ These authors 
have shown that the Fokker -P lanck  equation is the equation o f  evolution for the 
one-body distribution funct ion of  the heavy particle, to lowest order in the mass 
ratio o f  light to heavy particles. 

This work, part of research supported by NNF Grant GP-8497, was done under the tenure of a 
National Science Foundation Senior Postdoctoral Fellowship, and of a sabbatical leave granted 
by the University of Oregon. 
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The methods used by these authors lend themselves to further generalizations 
of the theory. One such generalization is the consideration of higher-order terms in 
in the mass ratio. This has already been treated in References 4-7. Another generali- 
zation is Brownian motion in nonuniform systems. Although this has already been 
considered by several authors, ~s-l~ it seems to us to be most simply treated by the 
methods under discussion. However, the generalization which we wish to pursue in 
this paper is the consideration of interaction between the Brownian particles them- 
selves, which must occur whenever they are present at nonvanishing concentration. 
These interactions will manifest themselves in a concentration dependence of the 
friction constant, which in turn manifests itself in a concentration dependence of 
the self-diffusion coefficient. We have already published some calculations on this 
effect m~ based on an intuitive extension of the molecular formula for the friction 
constant. One of the purposes of the present paper is to put these earlier calculations 
on a firm footing. 

The paper is organized as follows: Section 2 derives the appropriate Fokker-  
Plack equation for a nonvanishing concentration of Brownian particles; Section 3 
derives a density expansion for the friction constant; and Section 4 contains a dis- 
cussion of the results. 

2. T H E  F O K K E R - P L A N C K  E Q U A T I O N  

The system under consideration consists of N + 1 heavy particles, all of  mass M, 
and n light particles, collectively called the solvent. The light particles need not be of 
the same type; they may differ in mass, charge, and interactions. However, to avoid a 
plethora of subscripts, we will not distinguish in our notation between the various 
species of small particles present. To do so would only make the equations appear 
very complicated, without adding anything to the problem. 

Our notation is the following: we use capital letters, R0 ,..., PN for the coordinates 
and momenta of the heavy particles (from now on called B-particles), and lower case 
letter rz ,..., p,  for the coordinates and momenta of the solvent. We use the abbrevi- 
ations d { N }  = d R z  ... d R u  dP1 "'" d P N  and d{n} = drz ... dr~ dpz . ' .  dp~ . The 
Hamiltonian of the system is 

P0 2 ~ e? v p~ 
H =  ~ + j ~ 2 M + ~ '  2m + U (1) 

Here U is the potential energy of interaction of solvent with solvent~ of solvent with 
B-particles, of B-particles with B-particles, and B-particles with external fields. The 
Liouville operator for the system is then 

L ~ LF + LB (2) 

l "~ LB=--l  ~'V0+FO'~oo 
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Here F~ or f~ is the force on a B- or solvent particle, respectively. We have denoted the 
gradient in configuration space by V, and the gradient in momentum space by a/aP. 
Clearly, the notation treats the B-particle labeled "0"  in a very unsymmetrical way 
from the other B-particles; we do this because we are interested in the singlet 
distribution function of the B-particles. 

The distribution function for the total system, P~+s-+l satisfies, of  course, 

and we are interested in 

�9 aPn+~V+l = Lpn+N+I (4) 
t at 

t01 = f Dn-HN+I d{n} d{N} (5) 

Let us define a projection operator /~ by 

P = ~ f d{n}d{N} (6) 

~7 being a function which is independent of  P0 and which has the property 

f ~ d{n) d{N) = t (7) 

for all Ro. We shall specify it more fully below. Furthermore, define the com- 
plementary projection operator 

and set 

C) = 1 - P ( s )  

PP~+N+Z = f = :qPx 

OPn+N+l = g 
(9) 

I t  is now a simple matter to use the projection operator technique of Zwanzig ta2~ 
to show t h a t f  satisfies the equation 

. a f  t ~ = P L f  -? P L  exp[--iOLt] g(O) - -  iPL ~ (o exp[iQL(t - -  t ')] QLf(t ' )  dt'  ( l o )  

Since g(0) = pzr --  ~pl(0), we shall follow Lebowitz and Rubin, I~ and choose ~/ 
to be the equilibrium distribution function of the n -5 N particles in the field of  
particle zero, and, furthermore, set g ( 0 ) =  0. We emphasize that this is not an 
approximation, in a mathematical sense. Since the problem of solving the Liouville 
equation is an initial-value problem, we are completely free to choose the initial 
conditions. Physically, however, one must choose the initial conditions to correspond 
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to the phenomenon under investigation. We feel that this initial condition does 
correspond, very closely, to the state of a B-particle in a homogeneous medium. 
In an inhomogeneous medium it would, of course, not be correct. In that case, it 
would be much better to take ~7 to be the local equilibrium distribution function of 
the n + N particles. We intend to return to this point in a future article. 

From this point on, the formal development overlaps considerably the treatment 
of Lebowitz and R6sibois. (6,13J Therefore we shall be brief, and only emphasize the 
new features connected with the B-particle-B-particle interactions. Let us call 
7~= m/M, where m is the largest of the masses of the light particles. Since 
(p~)/(p2) = O(7'2), it follows that LB is, on the average 0(7 ) times smaller than LF. 
The fact that there are some B-particle terms in LF,  which are 0(7') smaller than the 
solvent terms, does not, of course, alter this conclusion. 

We can therefore expand the exponential operator in Eq. (10) in powers of LB, 
retaining only the zeroth-order term: 

t-~-" 8f = PLf  - iPL fro exp[--iOLF(t -- t')] OLJ(t') dt' (11) 

Note that this is not a systematic expansion in powers of 7' as was the case in the 
single B-particle problem; there are some terms of order 7" in L r .  There is, however, 
no requirement that one expand everything available in terms of a small parameter. 
In fact, cases are known, notably in the theory of nonlinear oscillations, where this 
is a very bad thing to do; it leads to secular terms which increase in time without 
limit. That would also have been the case here if we had expanded the exponential 
operator in powers of 7, rather than LB. 

Since Le is a divergence-like operator in n + N space, PLF = 0 and ~LF = L r .  
At this point, we can abandon the formal development and go directly to the result. 
There is considerable algebra between Eq. (11) and the final result, but, from this stage 
on, it is word for word, step for step, the same as given by Lebowitz and R6sibois 16) 
and R6sibois(l~L We therefore omit it. The final equation is 

~Pl Po ~ 9 8 Po 
at + M "  V ~  fo (F~ - t') F~ : ~ o  (~o  -}- M k T - )  p'(t')dt' (12) 

The brackets ( . . . )  indicate an equilibrium average and F0 is the total force on the 
B-particle zero due to the solvent and the other B-particles. In its computation, 
particle zero is held fixed during the time evolution, but all the other B-particles are 
permitted to move according to the dictates of the equations of motion. 

Had we done a systematic expansion 7 in going from (10) to (11), then Eq. (12) 
would look formally the same, though the meaning of the average (---) would change. 
The time evolution of F0(t ) would have to be computed with all of the B-particles 
held fixed, and then averaged over the configurations of the N + 1 B-particles. 
This would lead to a time-independent term in (F0(t -- t') F0(0)) due to B-particle- 
B-particle forces. Since pz(t') is a slowly varying function of t', a constant term in the 
average would lead to secular behavior on the right-hand side of Eq. (12). We have 
avoided this difficulty in our expansion. 
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3. T H E  FORCE C O R R E L A T I O N  

We now want to analyze the force correlation function (F0(r) F0(O)). In parti- 
cular, we would like to study its dependence on the concentration of B-particles. 
When this concentration is small, an analysis is possible in terms of a densitity 
expansion, analogous to the virial expansion of the properties of a gas. 

Let us define 

MN = f exp(--flH~+N) Fo(t) Fo(0) d{n} (13) 

The B-particles, except for number zero, all move and contribute to F0(t), but 
are not yet averaged over. We have 

<Fo(t) Fo(O)> = f SN d{N} (14) 

where 

SN = MN/ZN+n 

ZN+n = f exp(--fiHN+,) d{n} d{U} 

(15) 

Now the conditional average of the force correlation (conditional on the initial 
phase of the B-particles) is 

Let the N B-particles be divided into two groups, say {N'} and {N"} and let the two 
groups be separated very far in space at time zero. Then at least one of the groups, 
say {N"}, is very far from particle zero, and these particles then cannot affect the force 
correlation. Hence 

(16) 

as the sets {N'} and {N"} get far apart. Since MN is time dependent, this need not 
hold for all times, but will hold for longer and longer times, the further {N'} and 
{N"} are separated at the initial time. 

Equation (16) then implies that, under the same circumstances, 

f exp(--flHN+n) d{n} 
SN ~ MN' (17) 

f exp(--i~[/N'+n ) d{n} ZN+ n 

or 

SN --~ SN'(P~v/PN') (18) 
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where PN and Pzv' are the N (or N') body distribution functions for N (or N') 
B-particles in the solvent. In the limit under discussion, however, 

PN ~ PN'P*" (19) 

where P?v,, has none of the effects of particle zero in the Hamiltonian. Finally, then 

s~--, SN'PN*" (20) 

when the set {N} goes into separated sets {N'} and {N"} .That is, the functions SN 
have a generalized product property. 

The functions P~v* have the ordinary product property of cluster theory [cf. 
Eq. (19)]. Hence one may define U functions by the recursive definitions 3 

Pl* = U1 

P2* = U~ + U~UI (21) 

P8* = U3 § 2 S2Sl § U1U1U1 

In the definition of Pa*, for example, the sum is over all permutations of function 
arguments among the factors in the product U2Uz �9 Since the PN* have the product 
property, it follows, by standard arguments, that the UN have the cluster property. 
They vanish when their arguments are divided into spatially separated groups. 

We note that Pz* = U1 is a constant, since particle zero plays no role in its 
definition. Since f PN* d{N} = 1, we must have U 1 = ~t~ -1 ,  where f2 is the volume 
of the system. Similarly, recursively from (21), one finds 

Uj d{j} = 0, j 3& 1 (22) 

Now we define new cluster function, VN, by 

& = v o  

S1= t71+ VoU~ 

& = v~ § y~ VIu1 + VoU2 + VoU, U~ (23) 

SN = VN § Z VN'+IU1 -~ 2 VN-2U2 § 2 VN-2U1U1 § "'" § VoU1 "'" U1 

We have seen above that the Su have a generalized product property (20). It then 
follows that the VN have the cluster property, VN -'+ 0 as {N} separates into spatially 
divided subsets {N'} and {N"}. The argument is quite akin to the usual one for the U 
functions. Briefly, in the expansion of SN'P*., V,~ functions for m > N'  cannot 
occur. They do occur in SN, however, and so they must vanish in the limit 

See, for example, Reference 14. 
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Now we are interested in 

(V0(t) Fo(0)) = f S N d{N} 

Using (23), we have 

(14) 

f Sxd{N}= f VNd{N}+ Nf d{N--  1} VN-af d{1} U1 

N ( N -  1) 
+ 2 f d { N -  2} VA,-~ f d{2} Us 

N ( N -  1) 2 
+ 2 fd{N--2}V~,-2[fd{1}U1] 
+ . . .  + If (24) 

By (22) we therefore have 

f SN d{N} = ~ "k] (N -- k)! V,~ d{k} 
k = 0  

Writing 

(25) 

we finally have 

(F0(t) F0(0)) = Vo -- (N/22) fly(l) q- (N/d2) ~/3v(2) -4- "'" (27) 

where we have approximated N(N -- 1) by N 2. It may look at first sight as though the 
s factors in (26) are brought in artificially, so that fly(k) may be volume dependent 
and (27) not a real density expansion. This is not the case, however. To see this, we 
consider the functions Ss at t = 0. Using the usual trick of integration by parts, it is 
easy to show that 

Sj(0) : n f ps+lVoV o Vo~ dG + J f PIVoVo Wo~- dR~ (28) 

Here Vo~ and Wo~ are the B-particle, solvent, and B-particle-B-particle potentials 

P J+l ~ f exp(--fiH1+n} d{n -- 1}/Z:+~ 
(29) 

Pj  = j exp(--fiHj+~) d{n}/Z1+n 

Because of the normalization of ps+l and Ps (normalized to unity), both integrals 
in (28) are O(D -J) for J small compared to n and N. Thus, the factors X? -k in (26) 
come in naturally, and ~v(k) is of the order of a mean square force times a volume 
(k-dimensional) of the order of the (range of the forces) ak. 
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The first density correction, /3v(1), is especially interesting, and we give it in 
detail below: 

flv(l) = f dR1 dP1 d{n} [ exp(--/~H~+z) Fo(Zl(t) Fo 1'(0) exp(--flH~) F~O,(t ) F~oO,(0) ] 
L Z~,+I ~2AZ~ 

(30) 

;t = (2rrMkT)3/2 ,  and is included because of the P1 integration since Pz does not 
occur in H~. The superscripts on the F's are to remind one of the number of 
B-particles, in addition to particle zero, which participate in determining Fo. 
Equations (12), (27), and (30) are the main results of this paper. 

4. D I S C U S S I O N  

We have developed a density expansion for the force autocorrelation function. 
How do we know that this series converges, or that the terms even exist (i.e., that the 
integrals defining them are finite)? As far as the convergence at the series is concerned, 
we are in the same situation as in most problems of theoretical physics and chemistry; 
we simply do not know, and hope for the best. 

Density expansions for time correlation functions in the theory of moderately 
dense gases have been plagued by the problem that the individual coefficients in the 
series are divergent. Cz5'16) This has been circumvented by rather sophisticated resum- 
marion of the most divergent terms of the series. Will such divergences take place 
in the series derived here? We argue that they will not. In the gas case, the coefficients 
in the density series depend on the dynamics of quite small numbers of molecules 
which allow certain repeated collisions involving initial correlations in far separated 
parts of phase space. In reality, these collisions do not occur; there are always other 
molecules present to destroy the delicate correlations causing the divergence. The 
divergences are an artifice of the expansion method, and are not inherent in the 
phenomena. 

In our case, the solvent molecules are always present, and in constant interaction 
with the B-particles. The expansion is in the B-particle density, the solvent density 
being held constant. The motion of the B-particles is thus dominated by their inter- 
actions with the solvent, and hence the conditions which cause the difficulty in the 
dense gas case do not appear to be present in the case at hand. 

Another question of principle which must be discussed in this connection is that 
of the range of the force between B-particles. Wo do not expect our density expansion 
to be valid when the force between B-particles is long-range; one could not, for 
example, treat self-diffusion in an electrolytic solution by our density expansion. 
However, there are a large number of interesting case in which short-range forces are 
operative. Even for charged colloids, or polyelectrolytes, the Coulomb forces are 
always screened by the small ions inevitably present, so that the forces are effectively 
short-range. The situation is' fundamentally different from that in solutions of small 
electrolytes, where the particles under study themselves do the screening. In the 
polymer case the screening is performed by the charged components of the solvent. 

We now return to the first density correction, Eq. (30), to suggest an approx- 
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imation which would remove this equation f rom the class of  purely formal expressions, 
and permit effective calculation. Let us consider (F~0~(t)Fc01)(0)), where the super- 
scripts have the same meaning as in (30). Initially, this force correlation will decay, 
due to interaction of the solvent with particle zero, in a manner very similar to the 
decay of the force correlation in the infinitely dilute case, e.g., (F~0~ F~~ The 
decay time will be independent of  M but the force correlation will not decay to zero 
in this time, as it does in the infinitely dilute case, because the mean force on particle 
zero (averaged over solvent only) does not vanish. One expects 

(F ol,(t) Fo, (31) 

where o~ 0 is the average force on particle zero, the average being taken over the 
solvent only. That is, at any time, the force on 0 is the mean force, plus fluctuations 
due to initial conditions. After a time -r, the fluctuations become uncorrelated with 
the initial force, but the mean force need not be uncorrelated with the initial force. 
In the infinitely dilute case, of  course, the mean force vanishes. 

One can now carry out the average over the solvent phases and obtain 

<l ,ol,(t ) F0,1,(0)) (32) 

This last correlation function will, itself, decay to zero, due to the motion of par tMe 1, 
but its decay time ~'B will be mass dependent, and rather long. The situation is shown 
qualitatively in Fig. 1. According to Eq. (30), we have to subtract the dashed curve 
in Fig. 1 f rom the solid curve. This leaves, in effect, only the slowly decaying tail of  
the correlation function, except for very short times of the order of  -r. 

Now the average force on particle zero depends on time only through the 

\ 

-ff t 

.9.0 
ta.o 

v 

Fig. 1. Schematic representation of the force correlation as a function of time. The solid curve 
gives the expected behavior when there is more than one Brownian particle present, and the dashed 
curve is for the case of only a single Brownian particle. 

8221zlx-7 
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dependence of R 1 on  time. The explicit dependence on solvent molecule coordinates 
has been taken into account in forming the average o~0. But we already have a first- 
order theory of how R1 depends on time, namely, Brownian motion theory in the 
infinitely dilute limit, i.e., Eq. (12) with only the V0 contribution to the force corre- 
lation being taken into account. Therefore, if p~0) is the appropriate solution of (12), 
i.e., that which approaches S(RI' -- R~) as t --+ 0, then 

t ~a~~ ( 1 )  r - -  - -  
/?v(1) f dR1 dRx "~'0 (R1 R0) ~~0~ R0) p~~ t) (33) 

This formula is relatively easy to use for computation, as has been shown earlier, m) 
It is rather remarkable that this approximation renders /3v(1) so much easier to 
calculate than the leading term. 

Unfortunately, one would appear to be on very shaky grounds were one to try 
to extend this "bootstrap" type of calculation to higher-order terms, if only because 
of the well known nonadditivity of average forces for more than two particles. 

We have waited until the end to remark that (12) is, of course, not the usual 
Fokker-Planck equation. This latter is obtained from (12) by noting that pl(t') is 
very slowly varying compared to (F0(t) F0(0)). Hence one may write 

f (Fo(t -- t') Fo(0)) pz(t') dr' ,m/h( t )  (Fo(t') Fo(0)) dt' 
0 0 

(34) 

The integral on the right-hand side of (13) is the usual friction constant kT~. 
In our case, although the contribution to the force correlation corresponding to V0 
is rapidly decaying, we have just finished arguing that/3v(1) is slowly varying, its 
time variation being due to the Brownian motion of the heavy particles, the very 
motion described by Pz. Hence it is not at all clear that the non-Markoffian 
equation (12) can be reduced to a Markoffian equation via (34), except for rather 
long times. Each case must be judged on its own merits, and this can be done rather 
efficaciously through the estimate given by Eq. (33). 
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